- 1. Obtain solutions to environmental problems in Al Jouf region.
- To improve water supply capacity, quality and reliability
- Reducing of natural and artificial Radiation pollution
- Recycling agricultural wastes and ways of utilizing them
- Conservation of Biological Diversity in Saudi Arabia

Article Title	DOI	Catego ry Rank
An extended assessment of natural radioactivity in the sediments of the mid- region of the Egyptian Red Sea coast	DOI10.1016/j.marpolbul.2021.112658	Q1
Characterization of synthesized xBaO-(40- x)Li2O- 60B2O3 glass system: a multi- dimensional research on optical and physical properties	10.1007/s10854-021-06265-у	Q3
Comparison of different adsorption pairs based on zeotropic and azeotropic mixture refrigerants for solar adsorption ice maker	https://doi.org/10.1007/s11356-021-13535-z	Q2
PbO–Sb2O3–B2O3–CuO glassy system: Evaluation of optical, gamma and neutron shielding properties	https://doi.org/ 10.1016/j.matchemphys.2020.123937	Q2
Tailoring the structuralism in xBaO·(30–x)Li2O·70B2O3 glasses for highly efficient shields of Gamma radiation and neutrons attenuators	https://doi.org/10.1088/1402-4896/ac297b	Q2
Antibiotic-Loaded Psyllium Husk Hemicellulose and Gelatin-Based Polymeric Films for Wound Dressing Application	https://doi.org/10.3390/pharmaceutics13020236	Q1
Theoretical and Experimental Parameters of the Structure and Crystallization Kinetics of Melt-Quenched As30Te64Ga6 Glassy Alloy	https://doi.org/10.1007/s10904-021-01938-x	Q2
Boosting the catalytic efficiency of platinum nanoparticles supported on	https://doi- org.sdl.idm.oclc.org/10.1016/j.fuel.2021.121681	Q1

pristine carbon nanotubes:		
Synergistic effects of		
conducting polymers		
Fully-developed laminar	https://www.emerald.com/insight/0961-	Q1
flow in trapezoidal ducts	5539.htm	
with rounded corners: a		
numerical solution and case		
studv		
A Significant Role of Tb2O3	https://doi-org.sdl.idm.oclc.org/10.1007/s10904-	02
on the Optical Properties	021-02040-v	~-
and Radiation Shielding		
Performance of Ga2O3-		
B2O3-AI2O3-GeO2 Glasses		
A Study of Thermal and	https://doi-org.sdl.idm.oc/c.org/10.1007/s12633-	03
Ontical Properties of	021-01440-6	45
22SiO(2)-23Bi(2)O(3)-	021 01440 0	
$27P(2)O_2 - 13TiO(2) - (5-y)$		
Characterization of	https://doi.org.cdl.idm.oclc.org/10.1007/c10854	02
nhysicochemical properties	021_07350_v	Q3
of As2Se3-GeTe-Agl	021-07550-y	
chalcohalide glasses for		
color cell and IP		
applications: influence of		
applications. Influence of		
Effects of Nd2O2	DOI10 1140/epip/s12360-021-01421-7	01
substitution on the	DO110.1140/epjp/313300-021-01421-2	QI
mechanical and radiation		
shielding properties of		
alumino-borobismuthate		
alumno-borobismuthate		
Effects of TeO2/P2O2	https://doi-	01
substitution on synthesis	org sdl idm ocle org/10 1016/i coromint 2021 07	QI
abysical optical and	102	
radiation shielding	192	
proportion of 7nO Li2O		
GoO2 Bi2O2 glassos		
Elastic proportios and	https://doi.org.cdl.idm.oc/c.org/10.1007/c10854	03
radiation shielding ability of	021 06442 7	US
	021-00442-2	
ZIIO-P2O5/B2O5 glass		
System Exprisation of	https://doi	02
	IIIIps.//U01-	QS
NiOrCu this films for high	org.sul.ium.ocic.org/10.1016/j.optmat.2021.1113	
NIO:Cu trin hims for high-	87	
performance ultraviolet		
priotodetector		02
FI-IK and Gamma Shielding	nttps://doi-org.sai.idm.ocic.org/10.100//s12633-	Q3
	U21-U1481-X	
23BI(2)U(3)-37B(2)U3-		
13110(2)-(5-x) LIF- x BaO		
Glasses		

Gamma, neutron, and charged-particles shielding properties of tellurite glass system containing Sb2O3 and V2O5	https://doi-org.sdl.idm.oclc.org/10.1007/s10854- 021-07204-7	Q3
Investigation of the structure and radiation shielding properties of borate/Y2O3 glasses	https://doi- org.sdl.idm.oclc.org/10.1140/epjp/s13360-021- 01565-y	Q1
Machine Learning Enabled Early Detection of Breast Cancer by Structural Analysis of Mammograms	https://www.techscience.com/cmc/v67n1/41171	Q2
Mechanical and Thermodynamic Characteristics of 22SiO(2)- 23Bi(2)O(3)-37B(2)O3- 13TiO(2)-(5-x) LiF- x BaO Glasses	https://doi-org.sdl.idm.oclc.org/10.1007/s12633- 021-01441-5	Q3
Nuclear shielding properties and buildup factors of Cr-based ferroalloys	https://doi- org.sdl.idm.oclc.org/10.1016/j.pnucene.2021.103 956	Q1
Organic heterostructure modified carbon nitride as apprehension for Quercetin Biosensor	https://doi- org.sdl.idm.oclc.org/10.1016/j.synthmet.2021.11 6813	Q2
Phosphate, phosphoric acid and phosphogypsum natural radioactivity and radiological hazards parameters	https://doi-org.sdl.idm.oclc.org/10.1007/s10967- 021-07842-5	Q3
Robust Adaptive HCS MPPT Algorithm-Based Wind Generation System Using Model Reference Adaptive Control	https://doi.org/10.3390/s21155187	Q1
Significant Enhanced Optical Parameters of PVA- Y2O3 Polymer Nanocomposite Films	https://doi-org.sdl.idm.oclc.org/10.1007/s10904- 021-01995-2	Q2
Significant influence of MoO3 content on synthesis, mechanical, and radiation shielding properties of B2O3-Pb3O4- Al2O3 glasses	https://doi- org.sdl.idm.oclc.org/10.1016/j.jallcom.2021.1606 25	Q1
Structural and magnetic properties of erbium substituted spinel ferrites for microwave absorptions	https://doi- org.sdl.idm.oclc.org/10.1080/16583655.2021.200 5320	Q2

· · · · · · · · · · · · · · · · · · ·		
Structural, thermal, and	https://doi-org.sdl.idm.oclc.org/10.1007/s10854-	Q3
mechanical characteristics	021-07158-w	
of yttrium lithium borate		
glasses and glass-ceramics		
Structure and AC electrical	https://doi-	Q3
characterization for	org.sdl.idm.oclc.org/10.1016/j.physb.2021.41297	
amorphous Se50Te50 thin-	5	
film fabricated by thermal		
evaporation technique		
Synthesis and	https://doi.org/10.1016/j.ijleo.2021.168199	Q2
characterization of B2O3-		
Ag3PO4-ZnO-Na2O glasses		
for optical and radiation		
shielding applications		
Synthesis of Pb3O4-SiO2-	https://doi-org.sdl.idm.oclc.org/10.1007/s12633-	Q3
ZnO-WO3 Glasses and their	021-01347-2	
Fundamental Properties for		
Gamma Shielding		
Applications		
Synthesis, Optical	https://doi-org.sdl.idm.oclc.org/10.1007/s11664-	Q3
Absorption and Radiation	020-08661-2	
Shielding Performance of		
Sodium Zinc Borate-Er2O3		
Glasses		
Synthesis, physical and	https://doi-	Q1
nuclear shielding properties	org.sdl.idm.oclc.org/10.1016/j.pnucene.2021.103	
of novel Pb-Al alloys	992	
The Evaluation of	https://doi-	Q2
Structural, Electrical and	org.sdl.idm.oclc.org/10.1080/16583655.2021.200	
Magnetic Properties of	5321	
Samarium substituted		
Spinel Ferrites		
The Influence of CoO/P2O5	https://doi.org/10.3390/ma14216632	Q1
Substitutions on the		
Structural, Mechanical, and		
Radiation Shielding of Boro-		
Phosphate Glasses		
The role of PbF2 on the	https://doi-org.sdl.idm.oclc.org/10.1007/s10854-	Q3
gamma-ray photon,	021-07382-4	
charged particles, and		
neutron shielding prowess		
of novel lead fluoro		
bismuth borate glasses		
The significant role of CeO2	https://doi-org.sdl.idm.oclc.org/10.1088/1402-	Q2
content on the radiation	4896/ac1028	
shielding performance of		
Fe2O3-P2O5 glass-		
ceramics: Geant4		
simulations study		

Theoretical investigation of pressure sensing using a defect of polystyrene inside	https://doi- org.sdl.idm.oclc.org/10.1016/j.matchemphys.202 1 12/4853	Q2
photonic crystals	1.124055	
Synthesis, physical, optical, structural and radiation shielding characterization of borate glasses: A focus on the role of SrO/Al2O3 substitution	https://doi- org.sdl.idm.oclc.org/10.1016/j.ceramint.2021.09. 301	Q1
A Review of Chemotherapy and Photodynamic Therapy for Lung Cancer Treatment	https://doi.org/10.2174/18715206206662004031 44945	Q3
Elastic properties and radiation shielding ability of ZnO–P2O5B2O3 glass system	https://doi.org/10.1007/s10854-021-06442-z	Q2
Enhancement in Optical Properties of Lanthanum- Doped Manganese Barium Hexaferrites under Different Substitutions	https://doi.org/10.1155/2021/8849595	Q3
Fabrication of direct Z- scheme MoO3/N-MoS2 photocatalyst for synergistically enhanced H- 2 production	10.1016/j.ijhydene.2021.09.230	Q2
Functionalized role of highly porous activated carbon in bismuth vanadate nanomaterials for boosted photocatalytic hydrogen evolution and synchronous activity in water	10.1016/j.ijhydene.2021.09.187	Q2
Growth and investigation of LaNiO3/La2O3 composites films for optoelectronic applications	https://doi.org/10.1016/j.ijleo.2021.168013	Q2
Structural and optical investigations on sprayed Co doped La2O3 thin films along with photocatalytic and anti-bacterial applications	https://doi.org/10.1016/j.ijleo.2021.166837	Q2
Synthesis and physical characterization of Ni- doped La2O3 for photocatytic application under sunlight	https://doi.org/10.1007/s10854-021-05264-3	Q2
Synthesis of BiVO4/NiFe2O4 composite	https://doi.org/10.1007/s13204-021-02186-8	Q3

for photocatalytic		
degradation of methylene		
blue		
Novel green synthesis of	https://doi-	Q1
hydroxyapatite uniform	org.sdl.idm.oclc.org/10.1016/j.ceramint.2020.09.	
nanorods via microwave-	256	
hydrothermal route using		
licorice root extract as		
template		
Sn-induced changes in the	https://doi-org.sdl.idm.oclc.org/10.1007/s00339-	Q2
structure and optical	020-04175-0	
properties of amorphous		
As-Se-Sn thin films for		
optical devices		
Ozone Depletion	https://www.techscience.com/cmc/v68n2/42163	Q2
Identification in		
Stratosphere Through		
Faster Region-Based		
Convolutional Neural		
Network		
Design of mesoporous ZnO	doi.org/10.1016/j.jclepro.2021.129416	Q1
@ silica fume-derived SiO2		
nanocomposite as		
photocatalyst for efficient		
crystal violet removal:		
Effective route to recycle		
industrial waste		